

Phy	sics 09-05 Faraday's Law of Induction and Lenz's Law	Name: _	
	Find what direction the induced magnetic field must be to	the change in flux by	or from
	the original field.		
	Having found the of the magnetic field, use the	to find the direction	1 of the
1	current.		
	pper ring falls through a rectangular region of a magnetic field as illustrated	d. What is the direction of the	
indu	ced current at each of the five positions?		
			× × × × × × ×
			× × ×
			× × × × × × ×
			× × × × × × ×
			× × × × × × ×
Pro	ctice Work		
170			
1.	Explain how magnetic flux can be zero when the magnetic field is not zero.		
2.	A particle accelerator sends high-velocity charged particles down an evacu		
	wire wrapped around the pipe could detect the passage of individual partic output of the coil as a single particle passes through it.	cles. Sketch a graph of the voltage	¥
3.	What is the value of the magnetic flux at coil 2 in Figure 1(a) due to coil 1?	(OpenStax 23.1) 0	
4.	What is the value of the magnetic flux through the coil in Figure 1(b) due to	(I)	
5.	Referring to Figure 2(a), what is the direction of the current induced in coi		
	2: (a) If the current in coil 1 increases? (b) If the current in coil 1	-	
	decreases? (c) If the current in coil 1 is constant? (OpenStax 23.3) CCW ,		
	CW, no		I
6.	Referring to Figure 2(b), what is the direction of the current induced in the coil: (a) If the current in the wire increases? (b) If the current in the wire		
	decreases? (c) If the current in the wire suddenly changes direction?		
	(OpenStax 23.4) CCW, CW, CW		
7.	Referring to Figure 3, what are the directions of the currents in coils 1, 2,	Coil 1 Coil 2 (a)	Wire Coil (b)
	and 3 (assume that the coils are lying in the plane of the circuit): (a) When the switch is first closed? (b) When the switch has been closed for a long	Figure 1	
	time? (c) Just after the switch is opened? (OpenStax 23.5) CCW, CCW, CW;		
	no, no, no; CW, CW, CCW		1
8.	Repeat the previous problem with the battery reversed. (OpenStax 23.6) C	W,	
0	CW, CCW; no, no, no; CCW, CCW, CW		I
9.	Suppose a 50-turn coil lies in the plane of the page in a uniform magnetic fit that is directed into the page. The coil originally has an area of 0.250 m ² . It		
	stretched to have no area in 0.100 s. What is the direction and magnitude of		
	the induced emf if the uniform magnetic field has a strength of 1.50 T?		
10	(OpenStax 23.8) 188 V CW	Coil 1 Coil 2 Coil (a)	Wire Coil (b)
10.	(a) An MRI technician moves his hand from a region of very low magnetic f strength into an MRI scanner's 2.00 T field with his fingers pointing in the	Figure 2	
	direction of the field. Find the average emf induced in his wedding ring, giv		A
	its diameter is 2.20 cm and assuming it takes 0.250 s to move it into the fie		
11	current would significantly change the temperature of the ring. (OpenStax Referring to the situation in the previous problem: (a) What current is indu		3
11.	is $0.0100 \ \Omega$? (b) What average power is dissipated? (c) What magnetic field		
	ring? (d) What is the direction of the induced magnetic field relative to the		
	0.304 A, 0.924 mW, 1. 74 $ imes$ 10 $^{-5}$ T, opposite		⁻ + ²
12.	A 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17		
	perpendicular to a uniform magnetic field. (This is 60 rev/s.) Find the mag induce an average emf of 10,000 V. (OpenStax 23.12) 0.425 T	netic field strength needed to	Figure 3
13	(a) A lightning bolt produces a rapidly varying magnetic field. If the bolt str	ikes the earth vertically and acts	like a current in a long
13.	straight wire, it will induce a voltage in a loop aligned like that in Figure 2(
	from a 2.00×10^6 A lightning strike, if the current falls to zero in 25.0 μ s? (
	produce noticeable consequences. (OpenStax 23.14) 251 V		